Table of Contents Table of Contents
Previous Page  71 / 72 Next Page
Information
Show Menu
Previous Page 71 / 72 Next Page
Page Background

Conflict of interest

The authors have no conflicts of interest.

Acknowledgment

The study was sponsored by a travel grant from Germany/Hong Kong

Joint Research Scheme (Ref: G_HK009/07) of the German Academic

Research Service (Deutscher Akademischer Austauschdienst (DAAD))

funded by means of the Federal Ministry of Education and Reserach of

Germany (Bundesministeriums für Bildung und Forschung (BMBF)).

The authors thank aap Biomaterials, Dieburg, Germany, for the

provision of the OSTIM

®

and OSTIM

®

+ collagen type-I implants.

References

[1]

Van Lieshout EM, Alt V. Bone graft substitutes and bone morphogenetic proteins for

osteoporotic fractures: what is the evidence? Injury 2016;47(Suppl 1):S43

6.

[2]

Canuto RA, Pol R, Martinasso G, Muzio G, Gallesio G, Mozzati M. Hydroxyapatite paste

Ostim(®), without elevation of full-thickness flaps, improves alveolar healing stimulating

BMP- and VEGF-mediated signal pathways: an experimental study in humans. Clin Oral

Implants Res 2013;24(Suppl A100):42

8.

[3]

Zaffe D, Traversa G, Mozzati M, Morelli F, D

Angeli G. Behavior of aqueous

nanocrystalline hydroxyapatite in oral bone regeneration. J Appl Biomater Biomech

2011;9:19

25.

[4]

Huber FX, McArthur N, Heimann L, Dingeldein E, Cavey H, Palazzi X, et al. Evaluation of a

novel nanocrystalline hydroxyapatite paste Ostim in comparison to Alpha-BSM - more

bone ingrowth inside the implanted material with Ostim compared to Alpha BSM. BMC

Musculoskelet Disord 2009;10:164.

[5]

Huber FX, Hillmeier J, Kock HJ, McArthur N, Huber C, DiwoM, et al. [Filling of metaphyseal

defects with nanocrystalline hydroxyapatite (Ostim) for fractures of the radius]. Zentralbl

Chir 2008;133:577

81.

[6]

Thorwarth M, Schultze-Mosgau S, Kessler P, Wiltfang J, Schlegel KA. Bone regeneration in

osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg

2005;63:1626

33.

[7]

Spies CK, Schnürer S, Gotterbarm T, Breusch S. The efficacy of Biobon and Ostim

within metaphyseal defects using the Göttinger Minipig. Arch Orthop Trauma Surg

2009;129:979

88.

[8]

Brandt J, Henning S, Michler G, Hein W, Bernstein A, Schulz M. Nanocrystalline

hydroxyapatite for bone repair: an animal study. J Mater Sci Mater Med 2010;21:283

94.

[9]

Chris Arts JJ, Verdonschot N, Schreurs BW, Buma P. The use of a bioresorbable nano-

crystalline hydroxyapatite paste in acetabular bone impaction grafting. Biomaterials

2006;27:1110

8.

[10]

Busenlechner D, Tangl S, Mair B, Fugger G, Gruber R, Redl H, Watzek G. Simultaneous in

vivo comparison of bone substitutes in a guided bone regeneration model. Biomaterials

2008;29:3195

200.

[11]

Di Lullo GA, Sweeney SM, Körkkö J, Ala-Kokko L, San Antonio JD. Mapping the ligand-

binding sites and disease-associated mutations on the most abundant protein in the

human, type I collagen. J Biol Chem 2002;277:4223

31.

[12]

Gelse K, Pöschl E, Aigner T. Collagens

structure, function, and biosynthesis. Adv Drug

Deliv Rev 2003;55:1531

46.

[13]

Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated

by small synthetic fragments of the molecule. Nature 1984;309:30

3.

[14]

Taubenberger V, Woodruff MA, Bai H, Muller DJ, Hutmacher DW. The effect of unlocking

RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation. Biomaterials

2010;31:2827

35.

[15]

Leung KS, Siu WS, Cheung NM, Lui PY, Chow DH, James A, Qin L. Goats as an osteopenic

animal model. J Bone Miner Res 2001;16:2348

55.

[16]

Leung KS, SiuWS, Li SF, Qin L, Cheung WH, Tam KF, Lui PP. An in vitro optimized injectable

calcium phosphate cement for augmenting screw fixation in osteopenic goats. J Biomed

Mater Res B Appl Biomater 2006;78:153

60.

[17]

Siu WS, Qin L, Cheung WH, Leung KS. A study of trabecular bones in ovariectomized goats

with micro-computed tomography and peripheral quantitative computed tomography.

Bone 2004;35:21

6.

[18]

Tam KF, Cheung WH, Lee KM, Qin L, Leung KS. Shockwave exerts osteogenic effect on

osteoporotic bone in an ovariectomized goat model. Ultrasound Med Biol 2009;35:1109

18.

[19]

Donath K, Breuer G. A method for the study of undecalcified bones and teeth with

attached soft tissue. J Oral Pathol 1982;11:318

26.

[20]

Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, VanWagoner M, et al. Skeletal

repair by in situ formation of the mineral phase of bone. Science 1995;267:1796

9.

[21]

Alt V, Thormann U, Ray S, Zahner D, Dürselen L, Lips K, et al. A new metaphyseal bone

defect model in osteoporotic rats to study biomaterials for the enhancement of bone

healing in osteoporotic fractures. Acta Biomater 2013;9:7035

42.

Fig. 5.

Transmission electron microscopy. Osteoclast-like cell localized in vicinity to a HA fragment with intracellular uptake of HA fragments (arrow) (

a

) and formation of a

ruffled border like resorption zone (

b

). Intracellular accumulation of HA remnants (arrows) by an osteoclast-like cell in vicinity to a HA fragment at lower (

c

) and higher magnifi-

cation with distribution of implant remnants within the entire cytoplasm (

d

). Osteoclast-like cell in the vicinity to a HA/col-1 implant with a high number of nuclei (

e

) and only

a small contact zone without formation of a ruffled border (

f

).

V. Alt et al. / Injury, Int. J. Care Injured 47S2 (2016) S58

S65

S65