

[28]
Paul O, Barker JU, Lane JM, Helfet DL, Lorich DG. Functional and radiographic outcomes
of intertrochanteric hip fractures treated with calcar reduction, compression, and
trochanteric entry nailing. J Orthop Trauma 2012;26:148
–
54.
[29]
Nepper-Rasmussen J, Mosekilde L. Local differences in mineral content in vertebral
trabecular bone measured by dual-energy computed tomography. Acta Radiol
1989;30:369
–
71.
[30]
Sandor T, Felsenberg D, Kalender WA, Brown E. Global and regional variations in the
spinal trabecular bone: single and dual energy examinations. J Clin Endocrinol Metab
1991;72:1157
–
68.
[31]
Keller TS, Moeljanto E, Main JA, Spengler DM. Distribution and orientation of bone in the
human lumbar vertebral centrum. J Spinal Disord 1992;5:60
–
74.
[32]
Antonacci MD, Hanson DS, Leblanc A, Heggeness MH. Regional variation in vertebral
bone density and trabecular architecture are influenced by osteoarthritic change and
osteoporosis. Spine 1997;22:2393
–
401; discussion 401-2.
[33]
Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M. Inhomogeneity of
human vertebral cancellous bone: systematic density and structure patterns inside the
vertebral body. Bone 2001;28:563
–
71.
[34]
Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphologyand its
contribution to vertebral fracture strength. Bone 2007;41:946
–
57.
[35]
Thomsen JS, Ebbesen EN, Mosekilde L. Zone-dependent changes in human vertebral
trabecular bone: clinical implications. Bone 2002;30:664
–
9.
[36]
Gong H, Zhang M, Yeung HY, Qin L. Regional variations in microstructural properties of
vertebral trabeculae with aging. J Bone Miner Metab 2005;23:174
–
80.
[37]
Oda K, Shibayama Y, Abe M, Onomura T. Morphogenesis of vertebral deformities in
involutional osteoporosis. Age-related, three-dimensional trabecular structure. Spine
1998;23:1050
–
5, discussion 6.
[38]
Simpson EK, Parkinson IH, Manthey B, Fazzalari NL. Intervertebral disc disorganization is
related to trabecular bone architecture in the lumbar spine. J Bone Miner Res
2001;16:681
–
7.
[39]
Keller TS, Ziv I, Moeljanto E, Spengler DM. Interdependence of lumbar disc and subdiscal
bone properties: a report of the normal and degenerated spine. J Spinal Disord
1993;6:106
–
13.
[40]
Cody DD, Goldstein SA, Flynn MJ, Brown EB. Correlations between vertebral regional
bone mineral density (rBMD) and whole bone fracture load. Spine 1991;16:146
–
54.
[41]
McCubbrey DA, Cody DD, Peterson EL, Kuhn JL, Flynn MJ, Goldstein SA. Static and fatigue
failure properties of thoracic and lumbar vertebral bodies and their relation to regional
density. J Biomech 1995;28:891
–
9.
[42]
Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM. Finite element modeling of
the human thoracolumbar spine. Spine 2003;28:559
–
65.
[43]
Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitrovertebral body
compressive strength better than quantitative computed tomography. Bone
2003;33:744
–
50.
[44]
Oden ZM, Selvitelli DM, Bouxsein ML. Effect of local density changes on the failure load
of the proximal femur. J Orthop Res 1999;17:661
–
7.
[45]
Nazarian A, Stauber M, Zurakowski D, Snyder BD, Muller R. The interaction of
microstructure and volume fraction in predicting failure in cancellous bone. Bone
2006;39:1196
–
202.
[46]
Yeh OC, Keaveny TM. Biomechanical effects of intra-specimen variations in trabecular
architecture: a three-dimensional finite element study. Bone 1999;25:223
–
8.
[47]
Jaasma MJ, Bayraktar HH, Niebur GL, Keaveny TM. Biomechanical effects of intraspeci-
men variations in tissue modulus for trabecular bone. J Biomech 2002;35:237
–
46.
[48]
Hong J, Cabe GD, Tedrow JR, Hipp JA, Snyder BD. Failure of trabecular bone with
simulated lytic defects can be predicted non-invasively by structural analysis. J Orthop
Res 2004;22:479
–
86.
[49]
Whealan KM, Kwak SD, Tedrow JR, Inoue K, Snyder BD. Noninvasive imaging predicts
failure load of the spine with simulated osteolytic defects. J Bone Joint Surg Am
2000;82:1240
–
51.
[50]
Snyder BD, Hauser-Kara DA, Hipp JA, Zurakowski D, Hecht AC, Gebhardt MC. Predicting
fracture through benign skeletal lesions with quantitative computed tomography. J Bone
Joint Surg Am 2006;88:55
–
70.
[51]
Kim DG, Hunt CA, Zauel R, Fyhrie DP, Yeni YN. The effect of regional variations of the
trabecular bone properties on the compressive strength of human vertebral bodies. Ann
Biomed Eng 2007;35:1907
–
13.
[52]
Hussein AI, Morgan EF. The effect of intravertebral heterogeneity in microstructure on
vertebral strength and failure patterns. Osteoporos Int 2013;24:979
–
89.
[53]
Polikeit A, Nolte LP, Ferguson SJ. Simulated influence of osteoporosis and disc
degeneration on the load transfer in a lumbar functional spinal unit. J Biomech
2004;37:1061
–
9.
[54]
Hussein AI, Mason ZD, Morgan EF. Presence of intervertebral discs alters observed
stiffness and failure mechanisms in the vertebra. J Biomech 2013;46:1683
–
8.
[55]
Jackman TM, Hussein AI, Adams AM, Makhnejia KK, Morgan EF. Endplate deflection is a
defining feature of vertebral fracture and is associated with properties of the underlying
trabecular bone. J Orthop Res 2014;32:880
–
6.
[56]
Brennan O, Kennedy OD, Lee TC, Rackard SM, O
’
Brien FJ. Biomechanical properties across
trabeculae from the proximal femur of normal and ovariectomised sheep. J Biomech
2009;42:498
–
503.
[57]
Brennan O, Kennedy OD, Lee TC, Rackard SM, O
’
Brien FJ, McNamara LM. The effects of
estrogen deficiency and bisphosphonate treatment on tissue mineralisation and
stiffness in an ovine model of osteoporosis. J Biomech 2011;44:386
–
90.
[58]
McNamara LM, Prendergast PJ, Schaffler MB. Bone tissue material properties are altered
during osteoporosis. J Musculoskelet Neuronal Interact 2005;5:342
–
3.
[59]
McNamara LM, Ederveen AG, Lyons CG, Price C, Schaffler MB, Weinans H, et al. Strength
of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats
over the course of ageing. Bone 2006;39:392
–
400.
[60]
Guo X, Goldstein S. Vertebral trabecular bone microscopic tissue elastic modu-
lus and hardness do not change in ovariectomized rats. J Orthop Res 2000;18:
333
–
6.
[61]
Bohic S, Rey C, Legrand A, Sfihi H, Rohanizadeh R, Martel C, et al. Characterization of the
trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone
2000;26:341
–
8.
[62]
Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, et al. A physical,
chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and
nandrolone decanoate-treated cynomolgus monkeys (macaca fascicularis). Bone
2000;27:541
–
50.
[63]
Loveridge N, Power J, Reeve J, Boyde A. Bone mineralization density and femoral neck
fragility. Bone 2004;35:929
–
41.
[64]
Busse B, HahnM, Soltau M, Zustin J, Püschel K, Duda GN, et al. Increased calcium content
and inhomogeneity of mineralization render bone toughness in osteoporosis:
Mineralization, morphology and biomechanics of human single trabeculae. Bone
2009;45:1034
–
43.
[65]
Nicholson P, Cheng X, Lowet G, Boonen S, Davie M, Dequeker J, et al. Structural and
material mechanical properties of human vertebral cancellous bone. Med Eng Phys
1997;19:729
–
37.
[66]
Brennan MA, Gleeson JP, Browne M, O
’
Brien FJ, Thurner PJ, McNamara LM. Site specific
increase in heterogeneity of trabecular bone tissue mineral during oestrogen deficiency.
Eur Cell Mater 2011;21:396
–
406.
[67]
Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution
in health and disease. Bone 2008;42:456
–
66.
[68]
Brennan MA, Gleeson JP, O
’
Brien FJ, McNamara LM. Effects of ageing, prolonged estrogen
deficiency and zoledronate on bone tissue mineral distribution. J Mech Behav Biomed
Mater 2014;29:161
–
70.
[69]
McNamara LM. Perspective on post-menopausal osteoporosis: establishing an interdis-
ciplinary understanding of the sequence of events from the molecular level to whole
bone fractures. J R Soc Interface 2010;7:353
–
72.
[70]
Augat P, Reeb H, Claes LE. Prediction of fracture load at different skeletal sites by
geometric properties of the cortical shell. J Bone Miner Res 1996;11:1356
–
63.
[71]
Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, et al. Volumetric quantitative
computed tomography of the proximal femur: precision and relation to bone strength.
Bone 1997;21:101
–
8.
[72]
Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, et al. Intracapsular hip
fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative
computed tomography. J Bone Miner Res 2001;16:1318
–
28.
[73]
Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, et al. Correlation of
bone mineral density with strength and microstructural parameters of cortical bone in
vitro. Bone 2002;31:90
–
5.
[74]
Yeni YN, Brown CU, Wang Z, Norman TL. The influence of bone morphology on fracture
toughness of the human femur and tibia. Bone 1997;21:453
–
9.
[75]
Wang X, Bank RA, TeKoppele JM, Agrawal CM. The role of collagen in determining bone
mechanical properties. J Orthop Res 2001;19:1021
–
6.
[76]
Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in
human compact bone. Bone 1995;17:521
–
25.
[77]
Tong X, Burton IS, Isaksson H, Jurvelin JS, Kroger H. Cortical bone histomorphometry in
male femoral neck: the investigation of age-association and regional differences. Calcif
Tissue Int 2015Apr;94(4):295
–
306.
[78]
Seeman E. Age- and menopause-related bone loss compromise cortical and trabecular
microstructure. J Gerontol A Biol Sci Med Sci 2013;68:1218
–
25.
[79]
Martin RB, Atkinson PJ. Age and sex-related changes in the structure and strength of the
human femoral shaft. J Biomech 1977;10:223
–
31.
[80]
Bouxsein ML, Myburgh KH, van der Meulen MC, Lindenberger E, Marcus R. Age-related
differences in cross-sectional geometry of the forearm bones in healthy women. Calcif
Tissue Int 1994;54:113
–
8.
[81]
Turner CH. Bone strength: current concepts. Ann N Y Acad Sci 2006;1068:429
–
46.
[82]
Currey J. Role of collagen and other organics in the mechanical properties of bone.
Osteop Int 2003;14:tbd.
[83]
Vashishth D. Advanced glycation end-products and bone fractures. IBMS BoneKEy
2009;6:268
–
78.
[84]
Saito M, Marumo K, Kida Y, Ushiku C, Kato S, Takao-Kawabata R, et al. Changes in the
contents of enzymatic immature, mature, and non-enzymatic senescent cross-links of
collagen after once-weekly treatment with human parathyroid hormone (1-34) for 18
months contribute to improvement of bone strength in ovariectomized monkeys.
Osteoporos Int 2011;22:2373
–
83.
[85]
Garnero P. The contribution of collagen crosslinks to bone strength. BoneKEy Rep
2012;1:182.
[86]
Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech
Ageing Dev 1998;106:1
–
56.
[87]
Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Influence of cross-link structure, density and
mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J
Mech Behav Biomed Mater 2015;52:1
–
13.
[88]
Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in
osteoporosis. Curr Osteoporos Rep 2012;10:141
–
50.
[89]
Eyre DR, Weis MA, Wu JJ. Advances in collagen cross-link analysis. Methods
2008;45:65
–
74.
G. Osterhoff et al. / Injury, Int. J. Care Injured 47S2 (2016) S11
–
S20
S19