Table of Contents Table of Contents
Previous Page  25 / 72 Next Page
Information
Show Menu
Previous Page 25 / 72 Next Page
Page Background

[28]

Paul O, Barker JU, Lane JM, Helfet DL, Lorich DG. Functional and radiographic outcomes

of intertrochanteric hip fractures treated with calcar reduction, compression, and

trochanteric entry nailing. J Orthop Trauma 2012;26:148

54.

[29]

Nepper-Rasmussen J, Mosekilde L. Local differences in mineral content in vertebral

trabecular bone measured by dual-energy computed tomography. Acta Radiol

1989;30:369

71.

[30]

Sandor T, Felsenberg D, Kalender WA, Brown E. Global and regional variations in the

spinal trabecular bone: single and dual energy examinations. J Clin Endocrinol Metab

1991;72:1157

68.

[31]

Keller TS, Moeljanto E, Main JA, Spengler DM. Distribution and orientation of bone in the

human lumbar vertebral centrum. J Spinal Disord 1992;5:60

74.

[32]

Antonacci MD, Hanson DS, Leblanc A, Heggeness MH. Regional variation in vertebral

bone density and trabecular architecture are influenced by osteoarthritic change and

osteoporosis. Spine 1997;22:2393

401; discussion 401-2.

[33]

Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M. Inhomogeneity of

human vertebral cancellous bone: systematic density and structure patterns inside the

vertebral body. Bone 2001;28:563

71.

[34]

Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphologyand its

contribution to vertebral fracture strength. Bone 2007;41:946

57.

[35]

Thomsen JS, Ebbesen EN, Mosekilde L. Zone-dependent changes in human vertebral

trabecular bone: clinical implications. Bone 2002;30:664

9.

[36]

Gong H, Zhang M, Yeung HY, Qin L. Regional variations in microstructural properties of

vertebral trabeculae with aging. J Bone Miner Metab 2005;23:174

80.

[37]

Oda K, Shibayama Y, Abe M, Onomura T. Morphogenesis of vertebral deformities in

involutional osteoporosis. Age-related, three-dimensional trabecular structure. Spine

1998;23:1050

5, discussion 6.

[38]

Simpson EK, Parkinson IH, Manthey B, Fazzalari NL. Intervertebral disc disorganization is

related to trabecular bone architecture in the lumbar spine. J Bone Miner Res

2001;16:681

7.

[39]

Keller TS, Ziv I, Moeljanto E, Spengler DM. Interdependence of lumbar disc and subdiscal

bone properties: a report of the normal and degenerated spine. J Spinal Disord

1993;6:106

13.

[40]

Cody DD, Goldstein SA, Flynn MJ, Brown EB. Correlations between vertebral regional

bone mineral density (rBMD) and whole bone fracture load. Spine 1991;16:146

54.

[41]

McCubbrey DA, Cody DD, Peterson EL, Kuhn JL, Flynn MJ, Goldstein SA. Static and fatigue

failure properties of thoracic and lumbar vertebral bodies and their relation to regional

density. J Biomech 1995;28:891

9.

[42]

Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM. Finite element modeling of

the human thoracolumbar spine. Spine 2003;28:559

65.

[43]

Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitrovertebral body

compressive strength better than quantitative computed tomography. Bone

2003;33:744

50.

[44]

Oden ZM, Selvitelli DM, Bouxsein ML. Effect of local density changes on the failure load

of the proximal femur. J Orthop Res 1999;17:661

7.

[45]

Nazarian A, Stauber M, Zurakowski D, Snyder BD, Muller R. The interaction of

microstructure and volume fraction in predicting failure in cancellous bone. Bone

2006;39:1196

202.

[46]

Yeh OC, Keaveny TM. Biomechanical effects of intra-specimen variations in trabecular

architecture: a three-dimensional finite element study. Bone 1999;25:223

8.

[47]

Jaasma MJ, Bayraktar HH, Niebur GL, Keaveny TM. Biomechanical effects of intraspeci-

men variations in tissue modulus for trabecular bone. J Biomech 2002;35:237

46.

[48]

Hong J, Cabe GD, Tedrow JR, Hipp JA, Snyder BD. Failure of trabecular bone with

simulated lytic defects can be predicted non-invasively by structural analysis. J Orthop

Res 2004;22:479

86.

[49]

Whealan KM, Kwak SD, Tedrow JR, Inoue K, Snyder BD. Noninvasive imaging predicts

failure load of the spine with simulated osteolytic defects. J Bone Joint Surg Am

2000;82:1240

51.

[50]

Snyder BD, Hauser-Kara DA, Hipp JA, Zurakowski D, Hecht AC, Gebhardt MC. Predicting

fracture through benign skeletal lesions with quantitative computed tomography. J Bone

Joint Surg Am 2006;88:55

70.

[51]

Kim DG, Hunt CA, Zauel R, Fyhrie DP, Yeni YN. The effect of regional variations of the

trabecular bone properties on the compressive strength of human vertebral bodies. Ann

Biomed Eng 2007;35:1907

13.

[52]

Hussein AI, Morgan EF. The effect of intravertebral heterogeneity in microstructure on

vertebral strength and failure patterns. Osteoporos Int 2013;24:979

89.

[53]

Polikeit A, Nolte LP, Ferguson SJ. Simulated influence of osteoporosis and disc

degeneration on the load transfer in a lumbar functional spinal unit. J Biomech

2004;37:1061

9.

[54]

Hussein AI, Mason ZD, Morgan EF. Presence of intervertebral discs alters observed

stiffness and failure mechanisms in the vertebra. J Biomech 2013;46:1683

8.

[55]

Jackman TM, Hussein AI, Adams AM, Makhnejia KK, Morgan EF. Endplate deflection is a

defining feature of vertebral fracture and is associated with properties of the underlying

trabecular bone. J Orthop Res 2014;32:880

6.

[56]

Brennan O, Kennedy OD, Lee TC, Rackard SM, O

Brien FJ. Biomechanical properties across

trabeculae from the proximal femur of normal and ovariectomised sheep. J Biomech

2009;42:498

503.

[57]

Brennan O, Kennedy OD, Lee TC, Rackard SM, O

Brien FJ, McNamara LM. The effects of

estrogen deficiency and bisphosphonate treatment on tissue mineralisation and

stiffness in an ovine model of osteoporosis. J Biomech 2011;44:386

90.

[58]

McNamara LM, Prendergast PJ, Schaffler MB. Bone tissue material properties are altered

during osteoporosis. J Musculoskelet Neuronal Interact 2005;5:342

3.

[59]

McNamara LM, Ederveen AG, Lyons CG, Price C, Schaffler MB, Weinans H, et al. Strength

of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats

over the course of ageing. Bone 2006;39:392

400.

[60]

Guo X, Goldstein S. Vertebral trabecular bone microscopic tissue elastic modu-

lus and hardness do not change in ovariectomized rats. J Orthop Res 2000;18:

333

6.

[61]

Bohic S, Rey C, Legrand A, Sfihi H, Rohanizadeh R, Martel C, et al. Characterization of the

trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone

2000;26:341

8.

[62]

Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, et al. A physical,

chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and

nandrolone decanoate-treated cynomolgus monkeys (macaca fascicularis). Bone

2000;27:541

50.

[63]

Loveridge N, Power J, Reeve J, Boyde A. Bone mineralization density and femoral neck

fragility. Bone 2004;35:929

41.

[64]

Busse B, HahnM, Soltau M, Zustin J, Püschel K, Duda GN, et al. Increased calcium content

and inhomogeneity of mineralization render bone toughness in osteoporosis:

Mineralization, morphology and biomechanics of human single trabeculae. Bone

2009;45:1034

43.

[65]

Nicholson P, Cheng X, Lowet G, Boonen S, Davie M, Dequeker J, et al. Structural and

material mechanical properties of human vertebral cancellous bone. Med Eng Phys

1997;19:729

37.

[66]

Brennan MA, Gleeson JP, Browne M, O

Brien FJ, Thurner PJ, McNamara LM. Site specific

increase in heterogeneity of trabecular bone tissue mineral during oestrogen deficiency.

Eur Cell Mater 2011;21:396

406.

[67]

Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution

in health and disease. Bone 2008;42:456

66.

[68]

Brennan MA, Gleeson JP, O

Brien FJ, McNamara LM. Effects of ageing, prolonged estrogen

deficiency and zoledronate on bone tissue mineral distribution. J Mech Behav Biomed

Mater 2014;29:161

70.

[69]

McNamara LM. Perspective on post-menopausal osteoporosis: establishing an interdis-

ciplinary understanding of the sequence of events from the molecular level to whole

bone fractures. J R Soc Interface 2010;7:353

72.

[70]

Augat P, Reeb H, Claes LE. Prediction of fracture load at different skeletal sites by

geometric properties of the cortical shell. J Bone Miner Res 1996;11:1356

63.

[71]

Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, et al. Volumetric quantitative

computed tomography of the proximal femur: precision and relation to bone strength.

Bone 1997;21:101

8.

[72]

Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, et al. Intracapsular hip

fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative

computed tomography. J Bone Miner Res 2001;16:1318

28.

[73]

Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, et al. Correlation of

bone mineral density with strength and microstructural parameters of cortical bone in

vitro. Bone 2002;31:90

5.

[74]

Yeni YN, Brown CU, Wang Z, Norman TL. The influence of bone morphology on fracture

toughness of the human femur and tibia. Bone 1997;21:453

9.

[75]

Wang X, Bank RA, TeKoppele JM, Agrawal CM. The role of collagen in determining bone

mechanical properties. J Orthop Res 2001;19:1021

6.

[76]

Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in

human compact bone. Bone 1995;17:521

25.

[77]

Tong X, Burton IS, Isaksson H, Jurvelin JS, Kroger H. Cortical bone histomorphometry in

male femoral neck: the investigation of age-association and regional differences. Calcif

Tissue Int 2015Apr;94(4):295

306.

[78]

Seeman E. Age- and menopause-related bone loss compromise cortical and trabecular

microstructure. J Gerontol A Biol Sci Med Sci 2013;68:1218

25.

[79]

Martin RB, Atkinson PJ. Age and sex-related changes in the structure and strength of the

human femoral shaft. J Biomech 1977;10:223

31.

[80]

Bouxsein ML, Myburgh KH, van der Meulen MC, Lindenberger E, Marcus R. Age-related

differences in cross-sectional geometry of the forearm bones in healthy women. Calcif

Tissue Int 1994;54:113

8.

[81]

Turner CH. Bone strength: current concepts. Ann N Y Acad Sci 2006;1068:429

46.

[82]

Currey J. Role of collagen and other organics in the mechanical properties of bone.

Osteop Int 2003;14:tbd.

[83]

Vashishth D. Advanced glycation end-products and bone fractures. IBMS BoneKEy

2009;6:268

78.

[84]

Saito M, Marumo K, Kida Y, Ushiku C, Kato S, Takao-Kawabata R, et al. Changes in the

contents of enzymatic immature, mature, and non-enzymatic senescent cross-links of

collagen after once-weekly treatment with human parathyroid hormone (1-34) for 18

months contribute to improvement of bone strength in ovariectomized monkeys.

Osteoporos Int 2011;22:2373

83.

[85]

Garnero P. The contribution of collagen crosslinks to bone strength. BoneKEy Rep

2012;1:182.

[86]

Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech

Ageing Dev 1998;106:1

56.

[87]

Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Influence of cross-link structure, density and

mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J

Mech Behav Biomed Mater 2015;52:1

13.

[88]

Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in

osteoporosis. Curr Osteoporos Rep 2012;10:141

50.

[89]

Eyre DR, Weis MA, Wu JJ. Advances in collagen cross-link analysis. Methods

2008;45:65

74.

G. Osterhoff et al. / Injury, Int. J. Care Injured 47S2 (2016) S11

S20

S19