

[30]
Aho AJ. Electron microscopic and histologic studies on fracture repair in old and young
rats. Acta Chir Scand Suppl 1966;357:162
–
5.
[31]
Lu C, Miclau T, Hu D, Hansen E, Tsui K, Puttlitz C, et al. Cellular basis for age-related
changes in fracture repair. J Orthop Res 2005;23:1300
–
7.
[32]
Lu C, Rollins M, Hou H, Swartz HM, Hopf H, Miclau T, et al. Tibial Fracture Decreases
Oxygen Levels at the Site of Injury. Iowa Orthop J 2008;28:14
–
21.
[33]
Meyer RA, Jr., Tsahakis PJ, Martin DF, Banks DM, Harrow ME, Kiebzak GM. Age and
ovariectomy impair both the normalization of mechanical properties and the accretion of
mineral by the fracture callus in rats. J Orthop Res 2001;19:428
–
35.
[34]
Slade Shantz JA, Yu YY, Andres W, Miclau T, 3rd, Marcucio R. Modulation of macrophage
activity during fracture repair has differential effects in young adult and elderly mice.
J Orthop Trauma 2014;28(Suppl 1):S10
–
4.
[35]
Xing Z, Lu C, Hu D, Miclau T, 3rd, Marcucio RS. Rejuvenation of the inflammatory system
stimulates fracture repair in aged mice. J Orthop Res 2010; 28: 1000
–
1006.
[36]
Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone
regeneration. J Bone Miner Res 2009;24:274
–
82.
[37]
Lu C, Marcucio R, Miclau T. Assessing Angiogenesis during Fracture Healing. Iowa Orthop J
2006;26.
[38]
Marsh DR, Li G. The biology of fracture healing: optimising outcome. Br Med Bull
1999;55:856
–
69.
[39]
Lu C, Hansen E, Sapozhnikova A, Hu D, Miclau T, Marcucio RS. Effect of age on
vascularization during fracture repair. J Orthop Res 2008;26:1384
–
9.
[40]
Behonick DJ, Xing Z, Lieu S, Buckley JM, Lotz JC, Marcucio RS, et al. Role of matrix
metalloproteinase 13 in both endochondral and intramembranous ossification during
skeletal regeneration. PLoS One 2007;2:e1150.
[41]
Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA. Altered fracture repair in the absence
of MMP9. Development 2003;130:4123
–
33.
[42]
Lieu S, Hansen E, Dedini R, Behonick D, Werb Z, Miclau T, et al. Impaired remodeling phase
of fracture repair in the absence of matrix metalloproteinase-2. Dis Model Mech
2011;4:203
–
11.
[43]
Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, et al. MMP-9/gelatinase B is
a key regulatorof growth plate angiogenesis and apoptosis of hypertrophic chondrocytes.
Cell 1998;93:411
–
22.
[44]
Wang X, Yu YY, Lieu S, Yang F, Lang J, Lu C, et al. MMP9 regulates the cellular response to
inflammation after skeletal injury. Bone 2013;52:111
–
9.
[45]
Dickson KF, Katzman S, Paiement G. The importance of the blood supply in the healing of
tibial fractures. Contemp Orthop 1995;30:489
–
93.
[46]
Lu C, Miclau T, Hu D, Marcucio RS. Ischemia leads to delayed union during fracture
healing: a mouse model. J Orthop Res 2007;25:51
–
61.
[47]
Lu C, Saless N, Wang X, Sinha A, Decker S, Kazakia G, et al. The role of oxygen during
fracture healing. Bone 2013;52:220
–
9.
[48]
Rivard A, Fabre J-E, Silver M, Chen D, Murohara T, Kearney M, et al. Age-Dependent
Impairment of Angiogenesis. Circulation 1999;99:111
–
20.
[49]
Eckardt H, Ding M, Lind M, Hansen ES, Christensen KS, Hvid I. Recombinant human
vascular endothelial growth factor enhances bone healing in an experimental nonunion
model. J Bone Joint Surg Br 2005;87:1434
–
8.
[50]
Tarkka T, Sipola A, Jamsa T, Soini Y, Yla-Herttuala S, Tuukkanen J, et al. Adenoviral VEGF-A
gene transfer induces angiogenesis and promotes bone formation in healing osseous
tissues. J Gene Med 2003;5:560
–
6.
[51]
Street J, Bao M, deGuzman L, Bunting S, Peale FV, Ferrara N, et al. Vascular endothelial
growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc
Natl Acad Sci USA 2002;99:9656
–
61.
[52]
Street JT, Wang JH, Wu QD, Wakai A, McGuinness A, Redmond HP. The angiogenic
response to skeletal injury is preserved in the elderly. J Orthop Res 2001;19:1057
–
66.
[53]
Lange J, Sapozhnikova A, Lu C, Hu D, Li X, Miclau T, 3rd, et al. Action of IL-1beta during
fracture healing. J Orthop Res 2010;28:778
–
84.
[54]
Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, et al. Osteogenic activity of the
fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am
2003:1544
–
52.
[55]
Lehmann W, Edgar CM, Wang K, Cho TJ, Barnes GL, Kakar S, et al. Tumor necrosis factor
alpha (TNF-alpha) coordinately regulates the expression of specific matrix metallopro-
teinases (MMPS) and angiogenic factors during fracture healing. Bone 2005;36:300
–
10.
[56]
Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N, et al. Lactate and
oxygen constitute a fundamental regulatory mechanism in wound healing. Wound
Repair Regen 2003;11:504
–
9.
[57]
Park SH, Silva M, Bahk WJ, McKellop H, Lieberman JR. Effect of repeated irrigation and
debridement on fracture healing in an animal model. J Orthop Res 2002;20:1197
–
204.
[58]
Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmidmaier G, et al. The early
fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev
2010;16:427
–
34.
[59]
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci
2010;123:4195
–
200.
[60]
Korpos E, Wu C, Sorokin L. Multiple roles of the extracellular matrix in inflammation. Curr
Pharm Des 2009;15:1349
–
57.
[61]
Kurtz A, Oh SJ. Age related changes of the extracellular matrix and stem cell maintenance.
Prev Med 2012;54:20.
[62]
Robert L. Mechanisms of aging of the extracellular matrix: role of the elastin-laminin
receptor. Gerontology 1998;44:307
–
17.
[63]
Sprenger CC, Plymate SR, Reed MJ. Aging-related alterations in the extracellular matrix
modulate the microenvironment and influence tumor progression. Int J Cancer
2010;127:2739
–
48.
[64]
Abou-Khalil R, Yang F, Mortreux M, Lieu S, Yu YY, Wurmser M, et al. Delayed bone
regeneration is linked to chronic inflammation in murine muscular dystrophy. J Bone
Miner Res 2014;29:304
–
15.
[65]
Utsugi K, Sakai H, Hiraoka H, Yashiki M, Mogi H. Intra-articular fibrous tissue formation
following ankle fracture: the significance of arthroscopic debridement of fibrous tissue.
Arthroscopy 2007;23:89
–
93.
[66]
Kular JK, Basu S, Sharma RI. The extracellular matrix: Structure, composition, age-related
differences, tools for analysis and applications for tissue engineering. J Tissue Eng 2014;5.
[67]
Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression.
J Cell Biol 2012;196:395
–
406.
[68]
Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix
gene expression in fibroblasts. Biochim Biophy Acta 2009;1793:911
–
20.
[69]
Choi HR, Cho KA, Kang HT, Lee JB, Kaeberlein M, Suh Y, et al. Restoration of senescent
human diploid fibroblasts by modulation of the extracellular matrix. Aging Cell
2011;10:148
–
57.
[70]
Cucchiarini M, Thurn T, Weimer A, Kohn D, Terwilliger EF, Madry H. Restoration of the
extracellular matrix in human osteoarthritic articular cartilage by overexpression of the
transcription factor SOX9. Arthritis Rheum 2007;56:158
–
67.
[71]
Peng Z, Tuukkanen J, Zhang H, Jamsa T, Vaananen HK. The mechanical strength of bone in
different rat models of experimental osteoporosis. Bone 1994;15:523
–
32.
[72]
Wronski TJ, Lowry PL, Walsh CC, Ignaszewski LA. Skeletal alterations in ovariectomized
rats. Calcif Tissue Int 1985;37:324
–
8.
[73]
Cooper C, Campion G, Melton LJ, 3rd. Hip fractures in the elderly: a world-wide
projection. Osteoporos Int 1992;2:285
–
9.
[74]
Cooper C, Melton LJ, 3rd. Epidemiology of osteoporosis. Trends Endocrinol Metab
1992;3:224
–
9.
[75]
Steen H, Fjeld TO. Lengthening osteotomy in the metaphysis and diaphysis. An
experimental study in the ovine tibia. Clin Orthop Relat Res 1989:297
–
305.
[76]
Bonnarens F, Einhorn TA. Production of a standard closed fracture in laboratory animal
bone. J Orthop Res 1984;2:97
–
101.
[77]
Adili A, Bhandari M, Schemitsch EH. The biomechanical effect of high-pressure irrigation
on diaphyseal fracture healing in vivo. J Orthop Trauma 2002;16:413
–
7.
[78]
Beck A, Krischak G, Sorg T, Augat P, Farker K, Merkel U, et al. Influence of diclofenac (group
of nonsteroidal anti-inflammatory drugs) on fracture healing. Arch Orthop Trauma Surg
2003;123:327
–
32.
[79]
Cao Y, Mori S, Mashiba T, Westmore MS, Ma L, Sato M, et al. Raloxifene, estrogen, and
alendronate affect the processes of fracture repair differently in ovariectomized rats.
J Bone Miner Res 2002;17:2237
–
46.
[80]
Histing T, Anton C, Scheuer C, Garcia P, Holstein JH, Klein M, et al. Melatonin impairs
fracture healing by suppressing RANKL-mediated bone remodeling. J Surg Res
2012;173:83
–
90.
[81]
Histing T, Holstein JH, Garcia P, Matthys R, Kristen A, Claes L, et al. Ex vivo analysis
of rotational stiffness of different osteosynthesis techniques in mouse femur fracture.
J Orthop Res 2009;27:1152
–
6.
[82]
Holstein JH, Menger MD, Culemann U, Meier C, Pohlemann T. Development of a locking
femur nail for mice. J Biomech 2007;40:215
–
9.
[83]
Krischak GD, Augat P, Sorg T, Blakytny R, Kinzl L, Claes L, et al. Effects of diclofenac on
periosteal callus maturation in osteotomy healing in an animal model. Arch Orthop
Trauma Surg 2007;127:3
–
9.
[84]
Rontgen V, Blakytny R, Matthys R, Landauer M, Wehner T, Gockelmann M, et al. Fracture
healing in mice under controlled rigid and flexible conditions using an adjustable
external fixator. J Orthop Res 2010;28:1456
–
62.
[85]
Simpson AH, Murray IR. Osteoporotic fracture models. Curr Osteoporos Rep 2015;
13:9
–
15.
[86]
Stuermer EK, Sehmisch S, Rack T, Wenda E, Seidlova-Wuttke D, Tezval M, et al. Estrogen
and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A
new fracture-healing model at the tibia in rat. Langenbecks Arch Surg 2010;395:163
–
72.
[87]
Alt V, Thormann U, Ray S, Zahner D, Durselen L, Lips K, et al. A new metaphyseal bone
defect model in osteoporotic rats to study biomaterials for the enhancement of bone
healing in osteoporotic fractures. Acta Biomater 2013;9:7035
–
42.
[88]
Thormann U, El Khawassna T, Ray S, Duerselen L, Kampschulte M, Lips K, et al. Differences
of bone healing in metaphyseal defect fractures between osteoporotic and physiological
bone in rats. Injury 2014;45:487
–
93.
W. H. Cheung et al. / Injury, Int. J. Care Injured 47S2 (2016) S21
–
S26
S26