

References
[1]
Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing
in normal and osteoporotic bone. Osteoporos Int 2005;16(Suppl 2):S36
–
43.
[2]
Marsh D, Woolf A, Akesson K. Osteoporosis and fragility fractures. Preface. Best Pract Res
Clin Rheumatol 2013;27:709
–
10.
[3]
Bouxsein ML, Seeman E. Quantifying the material and structural determinants of bone
strength. Best Pract Res Clin Rheumatol 2009;23:741
–
53.
[4]
Trabelsi N, Yosibash Z, Wutte C, Augat P, Eberle S. Patient-specific finite element analysis
of the human femur
–
a double-blinded biomechanical validation. J Biomech
2011;44:1666
–
72.
[5]
Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, et al. Volumetric quantitative
computed tomography of the proximal femur: precision and relation to bone strength.
Bone 1997;21:101
–
8.
[6]
Silva MJ. Biomechanics of osteoporotic fractures. Injury 2007;38(Suppl 3):S69
–
76.
[7]
Consensus development conference: prophylaxis and treatment of osteoporosis. Am J
Med 1991;90:107
–
10.
[8]
Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest
2005;115:3318
–
25.
[9]
Zimmermann EA, Busse B, Ritchie RO. The fracture mechanics of human bone: influence
of disease and treatment. Bonekey Rep 2015;4:743.
[10]
Nyman JS, Roy A, Tyler JH, Acuna RL, Gayle HJ, Wang X. Age-related factors
affecting the postyield energy dissipation of human cortical bone. J Orthop Res
2007;25:646
–
55.
[11]
Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone
Joint Surg Am 1976;58:82
–
6.
[12]
Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical
bone with age. Bone 1998;22:57
–
66.
[13]
Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship
between the structural and orthogonal compressive properties of trabecular bone. J
Biomech 1994;27:375
–
89.
[14]
Augat P, Link T, Lang TF, Lin JC, Majumdar S, Genant HK. Anisotropy of the elastic modulus
of trabecular bone specimens from different anatomical locations. Med Eng Phys
1998;20:124
–
31.
[15]
McCalden RW, McGeough JA, Court-Brown CM. Age-related changes in the compressive
strength of cancellous bone. The relative importance of changes in densityand trabecular
architecture. J Bone Joint Surg Am 1997;79:421
–
7.
[16]
Mosekilde L, Mosekilde L, Danielsen CC. Biomechanical competence of vertebral
trabecular bone in relation to ash density and age in normal individuals. Bone
1987;8:79
–
85.
[17]
Courtney AC, Wachtel EF, Myers ER, Hayes WC. Age-related reductions in the
strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am
1995;77:387
–
95.
[18]
Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Age- and
gender-related differences in vertebral bone mass, density, and strength. J Bone Miner Res
1999;14:1394
–
403.
[19]
van den Kroonenberg AJ, Hayes WC, McMahon TA. Hip impact velocities and body
configurations for voluntary falls from standing height. J Biomech 1996;29:807
–
11.
[20]
Cornell CN, Ayalon O. Evidence for success with locking plates for fragility fractures. HSS J
2011;7:164
–
9.
[21]
Goldhahn J, Suhm N, Goldhahn S, Blauth M, Hanson B. Influence of osteoporosis on
fracture fixation
–
a systematic literature review. Osteoporos Int 2008;19:761
–
72.
[22]
Seebeck J, Goldhahn J, Stadele H, Messmer P, Morlock MM, Schneider E. Effect of cortical
thickness and cancellous bone density on the holding strength of internal fixator screws.
J Orthop Res 2004;22:1237
–
42.
[23]
Seebeck J, Goldhahn J, Morlock MM, Schneider E. Mechanical behavior of screws in
normal and osteoporotic bone. Osteoporos Int 2005;16(Suppl 2):S107
–
11.
[24]
Pitzen T, Franta F, Barbier D, Steudel WI. Insertion torque and pullout force of rescue
screws for anterior cervical plate fixation in a fatigued initial pilot hole. J Neurosurg Spine
2004;1:198
–
201.
[25]
Knop C, Lange U, Bastian L, Oeser M, Blauth M. Biomechanical compression tests with a
new implant for thoracolumbar vertebral body replacement. Eur Spine J 2001;10:30
–
7.
[26]
Knoller SM, Meyer G, Eckhardt C, Lill CA, Schneider E, Linke B. Range of motion in
reconstruction situations following corpectomy in the lumbar spine: a question of bone
mineral density? Spine (Phila Pa 1976) 2005;30:E229
–
35.
[27]
Zhuang XM, Yu BS, Zheng ZM, Zhang JF, LuWW. Effect of the degree of osteoporosis on the
biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison
between unaugmented bicortical screws and polymethylmethacrylate augmented
unicortical screws. Spine (Phila Pa 1976) 2010;35:E925
–
31.
[28]
Ali AM, Saleh M, Eastell R, Wigderowitz CA, Rigby AS, Yang L. Influence of bone quality on
the strength of internal and external fixation of tibial plateau fractures. J Orthop Res
2006;24:2080
–
6.
[29]
Zahn RK, Frey S, Jakubietz RG, Jakubietz MG, Doht S, Schneider P, et al. A contoured
locking plate for distal fibular fractures in osteoporotic bone: a biomechanical cadaver
study. Injury 2012;43:718
–
25.
[30]
Tingart MJ, Lehtinen J, Zurakowski D, Warner JJ, Apreleva M. Proximal humeral fractures:
regional differences in bone mineral density of the humeral head affect the fixation
strength of cancellous screws. J Shoulder Elbow Surg 2006;15:620
–
4.
[31]
Roderer G, Gebhard F, Krischak G, Wilke HJ, Claes L. Biomechanical in vitro assessment of
fixed angle plating using a new concept of locking for the treatment of osteoporotic
proximal humerus fractures. Int Orthop 2011;35:535
–
41.
[32]
Augat P, Rapp S, Claes L. A modified hip screw incorporating injected cement for the
fixation of osteoporotic trochanteric fractures. J Orthop Trauma 2002;16:311
–
6.
[33]
Konstantinidis L, Papaioannou C, Blanke P, Hirschmuller A, Sudkamp NP, Helwig P. Failure
after osteosynthesis of trochanteric fractures. Where is the limit of osteoporosis?
Osteoporos Int 2013;24:2701
–
6.
[34]
Miranda MA. Locking plate technology and its role in osteoporotic fractures. Injury
2007;38(Suppl 3):S35
–
9.
[35]
Zehnder S, Bledsoe JG, Puryear A. The effects of screw orientation in severelyosteoporotic
bone: a comparison with locked plating. Clin Biomech (Bristol, Avon) 2009;24:589
–
94.
[36]
Seide K, Triebe J, Faschingbauer M, Schulz AP, Puschel K, Mehrtens G, et al. Locked vs.
unlocked plate osteosynthesis of the proximal humerus
–
a biomechanical study. Clin
Biomech (Bristol, Avon) 2007;22:176
–
82.
[37]
MacLeod AR, Simpson AH, Pankaj P. Reasons why dynamic compression plates are inferior
to locking plates in osteoporotic bone: a finite element explanation. Comput Methods
Biomech Biomed Engin 2015;18:1818
–
25.
[38]
MacLeod AR, Pankaj P, Simpson AH. Does screw-bone interface modelling matter in finite
element analyses? J Biomech 2012;45:1712
–
6.
[39]
Bottlang M, Doornink J, Byrd GD, Fitzpatrick DC, Madey SM. A nonlocking end screw can
decrease fracture risk caused by locked plating in the osteoporotic diaphysis. J Bone Joint
Surg Am 2009;91:620
–
7.
[40]
Mair S, Weninger P, Hogel F, Panzer S, Augat P. Stability of volar fixed-angle plating
for distal radius fractures. Failure modes in osteoporotic bone. Unfallchirurg
2013;116:338
–
44.
[41]
Giannoudis PV, Schneider E. Principles of fixation of osteoporotic fractures. J Bone Joint
Surg Br 2006;88:1272
–
8.
[42]
Barrios C, Brostrom LA, Stark A, Walheim G. Healing complications after internal fixation
of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma
1993;7:438
–
42.
[43]
Marongiu G, Mastio M, Capone A. Current options to surgical treatment in osteoporotic
fractures. Aging Clin Exp Res 2013;25(Suppl 1):S15
–
7.
[44]
Sambrook P, Cooper C. Osteoporosis. Lancet 2006;367:2010
–
8.
[45]
Hungerer S, Eberle S, Lochner S, Maier M, Hogel F, Penzkofer R, et al. Biomechanical
evaluation of subtalar fusion: the influence of screw configuration and placement. J Foot
Ankle Surg 2013;52:177
–
83.
[46]
Born CT, Karich B, Bauer C, von Oldenburg G, Augat P. Hip screw migration testing: first
results for hip screws and helical blades utilizing a new oscillating test method. J Orthop
Res 2011;29:760
–
6.
[47]
Koller H, Zenner J, Hitzl W, Resch H, Stephan D, Augat P, et al. The impact of a distal
expansion mechanism added to a standard pedicle screw on pullout resistance. A
biomechanical study. Spine J 2013;13:532
–
41.
[48]
Eschler A, Brandt S, Gierer P, Mittlmeier T, Gradl G. Angular stable multiple screw fixation
(Targon FN) versus standard SHS for the fixation of femoral neck fractures. Injury 2014;45
(Suppl 1):S76
–
80.
[49]
Kammerlander C, Erhart S, Doshi H, GoschM, BlauthM. Principles of osteoporotic fracture
treatment. Best Pract Res Clin Rheumatol 2013;27:757
–
69.
[50]
Schliemann B, Wahnert D, Theisen C, Herbort M, Kosters C, Raschke MJ, et al. How to
enhance the stability of locking plate fixation of proximal humerus fractures? An
overview of current biomechanical and clinical data. Injury 2015;46:1207
–
14.
[51]
Schmidt-Rohlfing B, Heussen N, Knobe M, Pfeifer R, Kaneshige JR, Pape HC. Reoperation
rate after internal fixation of intertrochanteric femur fractures with the percutaneous
compression plate: what are the risk factors? J Orthop Trauma 2013;27:312
–
7.
[52]
Hoffmann S, Paetzold R, Stephan D, Puschel K, Buehren V, Augat P. Biomechanical
evaluation of interlocking lag screw design in intramedullary nailing of unstable
pertrochanteric fractures. J Orthop Trauma 2013;27:483
–
90.
[53]
Ruecker AH, Rupprecht M, Gruber M, Gebauer M, Barvencik F, Briem D, et al. The
treatment of intertrochanteric fractures: results using an intramedullary nail with in-
tegratedcephalocervicalscrewsandlinearcompression.JOrthopTrauma2009;23:22
–
30.
[54]
Buhren V. Intramedullary compression nailing of long tubular bones. Unfallchirurg
2000;103:708
–
20.
[55]
Iundusi R, Gasbarra E, D
’
Arienzo M, Piccioli A, Tarantino U. Augmentation of tibial plateau
fractures with an injectable bone substitute: CERAMENT. Three year follow-up from a
prospective study. BMC Musculoskelet Disord 2015;16:115.
[56]
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory
conditions. Nat Rev Rheumatol 2012;8:133
–
43.
[57]
Nordstrom A, Karlsson C, Nyquist F, Olsson T, Nordstrom P, Karlsson M. Bone loss and
fracture risk after reduced physical activity. J Bone Miner Res 2005;20:202
–
7.
[58]
Peter RE. Open reduction and internal fixation of osteoporotic acetabular fractures
through the ilio-inguinal approach: use of buttress plates to control medial displacement
of the quadrilateral surface. Injury 2015;46(Suppl 1):S2
–
7.
[59]
Tosounidis TH, Castillo R, Kanakaris NK, Giannoudis PV. Common complications in hip
fracture surgery: tips/tricks and solutions to avoid them. Injury 2015;46(Suppl 5):S3
–
11.
[60]
Makridis KG, Karachalios T, Kontogeorgakos VA, Badras LS, Malizos KN. The effect of
osteoporotic treatment on the functional outcome, re-fracture rate, quality of life and
mortality in patients with hip fractures: a prospective functional and clinical outcome
study on 520 patients. Injury 2015;46:378
–
83.
[61]
Hopf JC, Krieglstein CF, Müller LP, Koslowsky TC. Percutaneous iliosacral screw fixation
after osteoporotic posterior ring fractures of the pelvis reduces pain significantly in
elderly patients. Injury 2015;46:1631
–
6.
[62]
Yoo JH, Kim SW, Kwak YH, Kim HJ. Overlapping intramedullary nailing after failed
minimally invasive locked plating for osteoporotic distal femur fractures
–
Report of 2
cases. Injury 2015;46:1174
–
7.
C. von Rüden, P. Augat / Injury, Int. J. Care Injured 47S2 (2016) S3
–
S10
S9