

compared to 14 control screws in the contralateral humerus.
Additionally, frozen cut sections along the screw axes were carried
out to macroscopically assess the integrity of the cement bone
interface. Extraction torque for augmented screws was not increased
compared to the control group and macroscopically there was no
damage to the trabeculae within the humeral head due to screw
removal. Therefore it was concluded that the removal of in situ PMMA
augmented screws from an angular stable plate can be accomplished
without additional damage to the bone-cement interface. These results
are in accordance with clinical observations of implant removal in
other anatomic locations following augmented screw fixation.
Conclusion and future directions
In summary, various treatment options for the use of augmenta-
tion in osteoporotic fracture fixation are currently available [54
–
59].
Different composites can be used for reconstruction of osseous defects
in fragility fractures in different anatomic locations. Strengthening
implant fixation through theuse ofmaterials suchas PMMAhave shown
promising mechanical and clinical results, with a majority of these
materials showing remarkable biocompatibility. Given the demo-
graphic changes of our aging population, the need for early weight-
bearing andmobilization toavoid complications and the loss of function
and independence in older patients is of great importance. Therefore,
the need to develop biomaterials that improve fixation in osteoporotic
bone is of great importance. Additional studies are necessary toevaluate
the mechanical, clinical, and biomedical aspects of augmentation using
different composites and in different injuries.
Conflict of interest
Dr. Christian Kammerlander has been involved in educational
activities with DePuy Synthes. All other authors declare no conflict of
interest.
References
[1]
Bleibler F, Benzinger P, Lehnert T, Becker C, Konig HH. Cost of fractures in German
hospitals
–
what role does osteoporosis play? Gesundheitswesen 2014;76:163
–
8.
[2]
An YH. Internal fixation in osteoporotic bone. Thieme 2011;1:3.
[3]
Tarantino U, Saturnino L, Scialdoni A, Feola M, Liuni FM, Tempesta V, et al. Fracture healing
in elderly patients: newchallenges forantiosteoporotic drugs. Aging Clin Exp Res 2013;25
(Suppl 1):S105
–
8.
[4]
Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H. Percutaneous
autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg
Am 2006;88(Suppl 1 Pt 2):322
–
7.
[5]
Lissenberg-Thunnissen SN, de Gorter DJ, Sier CF, Schipper IB. Use and efficacy of bone
morphogenetic proteins in fracture healing. Int Orthop 2011;35:1271
–
80.
[6]
Malhotra A, Pelletier MH, Yu Y, Walsh WR. Can platelet-rich plasma (PRP) improve bone
healing? A comparison between the theory and experimental outcomes. Arch Orthop
Trauma Surg 2013;133:153
–
65.
[7]
Eschle D, Aeschlimann AG. Is supplementation of vitamin d beneficial for fracture
healing? A short review of the literature. Geriatr Orthop Surg Rehabil 2011;2:90
–
3.
[8]
Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or
delayed osseous union. Clinical Orthop Rel Res 2001:90
–
4.
[9]
Galibert P, Deramond H, Rosat P, Le Gars D. [Preliminary note on the treatment of verte-
bral angioma by percutaneous acrylic vertebroplasty]. Neuro-Chirurgie 1987;33:166
–
8.
[10]
Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P.
Augmentation of mechanical properties in osteoporotic vertebral bones
–
a biomechanical
investigation of vertebroplasty efficacy with different bone cements. Eur Spine J
2001;10:164
–
71.
[11]
Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion JE. Percutaneous
polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body
compression fractures: technical aspects. AJNR Am J Neuroradiol 1997;18:1897
–
904.
[12]
Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH, et al. A
randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med
2009;361:569
–
79.
[13]
Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ. Histologic changes after
vertebroplasty. J Bone Joint Surg Am 2004;86-A:1230
–
8.
[14]
Bouza C, Lopez T, Magro A, Navalpotro L, Amate JM. Efficacy and safety of balloon
kyphoplasty in the treatment of vertebral compression fractures: a systematic review. Eur
Spine J 2006;15:1050
–
67.
[15]
Verlaan JJ, Dhert WJ, Verbout AJ, Oner FC. Balloon vertebroplasty in combination with
pedicle screw instrumentation: a novel technique to treat thoracic and lumbar burst
fractures. Spine 2005;30:E73
–
9.
[16]
Nakano M, Hirano N, Matsuura K, Watanabe H, Kitagawa H, Ishihara H, et al. Percutaneous
transpedicular vertebroplasty with calcium phosphate cement in the treatment of
osteoporotic vertebral compression and burst fractures. J Neurosurg 2002;97:287
–
93.
[17]
Kolb JP, Kueny RA, Puschel K, Boger A, Rueger JM, Morlock MM, et al. Does the cement
stiffness affect fatigue fracture strength of vertebrae after cement augmentation in
osteoporotic patients? Eur Spine J 2013;22:1650
–
6.
[18]
Goost H, Deborre C, Wirtz DC, Burger C, Prescher A, Folsch C, et al. PMMA-augmentation
of incompletely cannulated pedicle screws: a cadaver study to determine the benefits in
the osteoporotic spine. Technol Health Care 2014;22:607
–
15.
[19]
Martincic D, Brojan M, Kosel F, Stern D, Vrtovec T, Antolic V, et al. Minimum cement
volume for vertebroplasty. Int Orthop 2015;39:727
–
33.
[20]
Wright TW, Miller GJ, Vander Griend RA, Wheeler D, Dell PC. Reconstruction of the
humerus with an intramedullary fibular graft. A clinical and biomechanical study. J Bone
Joint Surg Br 1993;75:804
–
7.
[21]
Kwon BK, Goertzen DJ, O
’
Brien PJ, Broekhuyse HM, Oxland TR. Biomechanical evaluation
of proximal humeral fracture fixation supplemented with calcium phosphate cement. J
Bone Joint Surg Am 2002;84-A:951
–
61.
[22]
Egol KA, Sugi MT, Ong CC, Montero N, Davidovitch R, Zuckerman JD. Fracture site
augmentation with calcium phosphate cement reduces screw penetration after open
reduction-internal fixation of proximal humeral fractures. J Shoulder Elbow Surg
2012;21:741
–
8.
[23]
Unger S, Erhart S, Kralinger F, BlauthM, SchmoelzW. The effect of in situ augmentation on
implant anchorage in proximal humeral head fractures. Injury 2012;43:1759
–
63.
[24]
Roderer G, Scola A, Schmolz W, Gebhard F, Windolf M, Hofmann-Fliri L. Biomechanical in
vitro assessment of screw augmentation in locked plating of proximal humerus fractures.
Injury 2013;44:1327
–
32.
[25]
Friedman SM, Mendelson DA. Epidemiology of fragility fractures. Clin Geriatr Med
2014;30:175
–
81.
[26]
Kammerlander C, Erhart S, Doshi H, GoschM, BlauthM. Principles of osteoporotic fracture
treatment. Best Pract Res Clin Rheumatol 2013;27:757
–
69.
[27]
Mattsson P, Alberts A, Dahlberg G, Sohlman M, Hyldahl HC, Larsson S. Resorbable cement
for the augmentation of internally-fixed unstable trochanteric fractures. A prospective,
randomised multicentre study. J Bone Joint Surg Br 2005;87:1203
–
9.
[28]
Lobo-Escolar A, Joven E, Iglesias D, Herrera A. Predictive factors for cutting-out in femoral
intramedullary nailing. Injury 2010;41:1312
–
6.
[29]
Gupta RK, Gupta V, Gupta N. Outcomes of osteoporotic trochanteric fractures treatedwith
cement-augmented dynamic hip screw. Indian J Orthop 2012;46:640
–
5.
[30]
Kammerlander C, Gebhard F, Meier C, Lenich A, Linhart W, Clasbrummel B, et al.
StandardisedcementaugmentationofthePFNAusingaperforatedblade:Anewtechnique
and preliminary clinical results. A prospective multicentre trial. Injury 2011;42:1484
–
90.
[31]
Biyani A, Reddy NS, Chaudhury J, Simison AJ, Klenerman L. The results of surgical
management of displaced tibial plateau fractures in the elderly. Injury 1995;26:291
–
7.
[32]
Blokker CP, Rorabeck CH, Bourne RB. Tibial plateau fractures. An analysis of the results of
treatment in 60 patients. Clin Orthop Rel Res 1984;182:193
–
9.
[33]
Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience
1968
–
1975. Clin Orthop Rel Res 1979:94
–
104.
[34]
Bucholz RW, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in
tibial plateau fractures. Clin Orthop Rel Res 1989:53
–
62.
[35]
Dall
’
Oca C, Maluta T, Moscolo A, Lavini F, Bartolozzi P. Cement augmentation of
intertrochanteric fractures stabilised with intramedullary nailing. Injury 2010;41:1150
–
5.
[36]
Muhr G, Tscherne H, Thomas R. Comminuted trochanteric femoral fractures in geriatric
patients: the results of 231 cases treated with internal fixation and acrylic cement. Clin
Orthop Rel Res 1979:41
–
4.
[37]
Schmalholz A. Bone cement for redislocated Colles
’
fracture. A prospective comparison
with closed treatment. Acta Orthop Scand 1989;60:212
–
7.
[38]
Blazejak M, Hofmann-Fliri L, Buchler L, Gueorguiev B, Windolf M. In vitro temperature
evaluation during cement augmentation of proximal humerus plate screw tips. Injury
2013;44:1321
–
6.
[39]
Goetzen M, Hofmann-Fliri L, Arens D, Zeiter S, Stadelmann V, Nehrbass D, et al. Does
metaphyseal cement augmentation in fracture management influence the adjacent
subchondral bone and joint cartilage?: an in vivo study in sheep stifle joints. Medicine
2015;94:e414.
[40]
Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and
angiogenesis in vitro. Tissue eng 2005;11:768
–
77.
[41]
Virolainen P, Heikkila J, Yli-Urpo A, Vuorio E, Aro HT. Histomorphometric and molecular
biologic comparison of bioactive glass granules and autogenous bone grafts in
augmentation of bone defect healing. J Biomed Mater Res 1997;35:9
–
17.
[42]
Heikkila JT, Kukkonen J, Aho AJ, Moisander S, Kyyronen T, Mattila K. Bioactive glass
granules: a suitable bone substitute material in the operative treatment of depressed
lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study. J Mater
Sci Mater Med 2011;22:1073
–
80.
[43]
Pernaa K, Koski I, Mattila K, Gullichsen E, Heikkila J, Aho A, et al. Bioactive glass S53P4 and
autograft bone in treatment of depressed tibial plateau fractures - a prospective
randomized 11-year follow-up. J Long Term Eff Med Implants 2011;21:139
–
48.
[44]
Watson JT. The use of an injectable bone graft substitute in tibial metaphyseal fractures.
Orthopedics 2004;27:s103
–
7.
[45]
Yu B, Han K, Ma H, Zhang C, Su J, Zhao J, et al. Treatment of tibial plateau fractures with
high strength injectable calcium sulphate. Int Orthop 2009;33:1127
–
33.
C. Kammerlander et al. / Injury, Int. J. Care Injured 47S2 (2016) S36
–
S43
S42