Table of Contents Table of Contents
Previous Page  48 / 72 Next Page
Information
Show Menu
Previous Page 48 / 72 Next Page
Page Background

compared to 14 control screws in the contralateral humerus.

Additionally, frozen cut sections along the screw axes were carried

out to macroscopically assess the integrity of the cement bone

interface. Extraction torque for augmented screws was not increased

compared to the control group and macroscopically there was no

damage to the trabeculae within the humeral head due to screw

removal. Therefore it was concluded that the removal of in situ PMMA

augmented screws from an angular stable plate can be accomplished

without additional damage to the bone-cement interface. These results

are in accordance with clinical observations of implant removal in

other anatomic locations following augmented screw fixation.

Conclusion and future directions

In summary, various treatment options for the use of augmenta-

tion in osteoporotic fracture fixation are currently available [54

59].

Different composites can be used for reconstruction of osseous defects

in fragility fractures in different anatomic locations. Strengthening

implant fixation through theuse ofmaterials suchas PMMAhave shown

promising mechanical and clinical results, with a majority of these

materials showing remarkable biocompatibility. Given the demo-

graphic changes of our aging population, the need for early weight-

bearing andmobilization toavoid complications and the loss of function

and independence in older patients is of great importance. Therefore,

the need to develop biomaterials that improve fixation in osteoporotic

bone is of great importance. Additional studies are necessary toevaluate

the mechanical, clinical, and biomedical aspects of augmentation using

different composites and in different injuries.

Conflict of interest

Dr. Christian Kammerlander has been involved in educational

activities with DePuy Synthes. All other authors declare no conflict of

interest.

References

[1]

Bleibler F, Benzinger P, Lehnert T, Becker C, Konig HH. Cost of fractures in German

hospitals

what role does osteoporosis play? Gesundheitswesen 2014;76:163

8.

[2]

An YH. Internal fixation in osteoporotic bone. Thieme 2011;1:3.

[3]

Tarantino U, Saturnino L, Scialdoni A, Feola M, Liuni FM, Tempesta V, et al. Fracture healing

in elderly patients: newchallenges forantiosteoporotic drugs. Aging Clin Exp Res 2013;25

(Suppl 1):S105

8.

[4]

Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H. Percutaneous

autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg

Am 2006;88(Suppl 1 Pt 2):322

7.

[5]

Lissenberg-Thunnissen SN, de Gorter DJ, Sier CF, Schipper IB. Use and efficacy of bone

morphogenetic proteins in fracture healing. Int Orthop 2011;35:1271

80.

[6]

Malhotra A, Pelletier MH, Yu Y, Walsh WR. Can platelet-rich plasma (PRP) improve bone

healing? A comparison between the theory and experimental outcomes. Arch Orthop

Trauma Surg 2013;133:153

65.

[7]

Eschle D, Aeschlimann AG. Is supplementation of vitamin d beneficial for fracture

healing? A short review of the literature. Geriatr Orthop Surg Rehabil 2011;2:90

3.

[8]

Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or

delayed osseous union. Clinical Orthop Rel Res 2001:90

4.

[9]

Galibert P, Deramond H, Rosat P, Le Gars D. [Preliminary note on the treatment of verte-

bral angioma by percutaneous acrylic vertebroplasty]. Neuro-Chirurgie 1987;33:166

8.

[10]

Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P.

Augmentation of mechanical properties in osteoporotic vertebral bones

a biomechanical

investigation of vertebroplasty efficacy with different bone cements. Eur Spine J

2001;10:164

71.

[11]

Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion JE. Percutaneous

polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body

compression fractures: technical aspects. AJNR Am J Neuroradiol 1997;18:1897

904.

[12]

Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH, et al. A

randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med

2009;361:569

79.

[13]

Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ. Histologic changes after

vertebroplasty. J Bone Joint Surg Am 2004;86-A:1230

8.

[14]

Bouza C, Lopez T, Magro A, Navalpotro L, Amate JM. Efficacy and safety of balloon

kyphoplasty in the treatment of vertebral compression fractures: a systematic review. Eur

Spine J 2006;15:1050

67.

[15]

Verlaan JJ, Dhert WJ, Verbout AJ, Oner FC. Balloon vertebroplasty in combination with

pedicle screw instrumentation: a novel technique to treat thoracic and lumbar burst

fractures. Spine 2005;30:E73

9.

[16]

Nakano M, Hirano N, Matsuura K, Watanabe H, Kitagawa H, Ishihara H, et al. Percutaneous

transpedicular vertebroplasty with calcium phosphate cement in the treatment of

osteoporotic vertebral compression and burst fractures. J Neurosurg 2002;97:287

93.

[17]

Kolb JP, Kueny RA, Puschel K, Boger A, Rueger JM, Morlock MM, et al. Does the cement

stiffness affect fatigue fracture strength of vertebrae after cement augmentation in

osteoporotic patients? Eur Spine J 2013;22:1650

6.

[18]

Goost H, Deborre C, Wirtz DC, Burger C, Prescher A, Folsch C, et al. PMMA-augmentation

of incompletely cannulated pedicle screws: a cadaver study to determine the benefits in

the osteoporotic spine. Technol Health Care 2014;22:607

15.

[19]

Martincic D, Brojan M, Kosel F, Stern D, Vrtovec T, Antolic V, et al. Minimum cement

volume for vertebroplasty. Int Orthop 2015;39:727

33.

[20]

Wright TW, Miller GJ, Vander Griend RA, Wheeler D, Dell PC. Reconstruction of the

humerus with an intramedullary fibular graft. A clinical and biomechanical study. J Bone

Joint Surg Br 1993;75:804

7.

[21]

Kwon BK, Goertzen DJ, O

Brien PJ, Broekhuyse HM, Oxland TR. Biomechanical evaluation

of proximal humeral fracture fixation supplemented with calcium phosphate cement. J

Bone Joint Surg Am 2002;84-A:951

61.

[22]

Egol KA, Sugi MT, Ong CC, Montero N, Davidovitch R, Zuckerman JD. Fracture site

augmentation with calcium phosphate cement reduces screw penetration after open

reduction-internal fixation of proximal humeral fractures. J Shoulder Elbow Surg

2012;21:741

8.

[23]

Unger S, Erhart S, Kralinger F, BlauthM, SchmoelzW. The effect of in situ augmentation on

implant anchorage in proximal humeral head fractures. Injury 2012;43:1759

63.

[24]

Roderer G, Scola A, Schmolz W, Gebhard F, Windolf M, Hofmann-Fliri L. Biomechanical in

vitro assessment of screw augmentation in locked plating of proximal humerus fractures.

Injury 2013;44:1327

32.

[25]

Friedman SM, Mendelson DA. Epidemiology of fragility fractures. Clin Geriatr Med

2014;30:175

81.

[26]

Kammerlander C, Erhart S, Doshi H, GoschM, BlauthM. Principles of osteoporotic fracture

treatment. Best Pract Res Clin Rheumatol 2013;27:757

69.

[27]

Mattsson P, Alberts A, Dahlberg G, Sohlman M, Hyldahl HC, Larsson S. Resorbable cement

for the augmentation of internally-fixed unstable trochanteric fractures. A prospective,

randomised multicentre study. J Bone Joint Surg Br 2005;87:1203

9.

[28]

Lobo-Escolar A, Joven E, Iglesias D, Herrera A. Predictive factors for cutting-out in femoral

intramedullary nailing. Injury 2010;41:1312

6.

[29]

Gupta RK, Gupta V, Gupta N. Outcomes of osteoporotic trochanteric fractures treatedwith

cement-augmented dynamic hip screw. Indian J Orthop 2012;46:640

5.

[30]

Kammerlander C, Gebhard F, Meier C, Lenich A, Linhart W, Clasbrummel B, et al.

StandardisedcementaugmentationofthePFNAusingaperforatedblade:Anewtechnique

and preliminary clinical results. A prospective multicentre trial. Injury 2011;42:1484

90.

[31]

Biyani A, Reddy NS, Chaudhury J, Simison AJ, Klenerman L. The results of surgical

management of displaced tibial plateau fractures in the elderly. Injury 1995;26:291

7.

[32]

Blokker CP, Rorabeck CH, Bourne RB. Tibial plateau fractures. An analysis of the results of

treatment in 60 patients. Clin Orthop Rel Res 1984;182:193

9.

[33]

Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience

1968

1975. Clin Orthop Rel Res 1979:94

104.

[34]

Bucholz RW, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in

tibial plateau fractures. Clin Orthop Rel Res 1989:53

62.

[35]

Dall

Oca C, Maluta T, Moscolo A, Lavini F, Bartolozzi P. Cement augmentation of

intertrochanteric fractures stabilised with intramedullary nailing. Injury 2010;41:1150

5.

[36]

Muhr G, Tscherne H, Thomas R. Comminuted trochanteric femoral fractures in geriatric

patients: the results of 231 cases treated with internal fixation and acrylic cement. Clin

Orthop Rel Res 1979:41

4.

[37]

Schmalholz A. Bone cement for redislocated Colles

fracture. A prospective comparison

with closed treatment. Acta Orthop Scand 1989;60:212

7.

[38]

Blazejak M, Hofmann-Fliri L, Buchler L, Gueorguiev B, Windolf M. In vitro temperature

evaluation during cement augmentation of proximal humerus plate screw tips. Injury

2013;44:1321

6.

[39]

Goetzen M, Hofmann-Fliri L, Arens D, Zeiter S, Stadelmann V, Nehrbass D, et al. Does

metaphyseal cement augmentation in fracture management influence the adjacent

subchondral bone and joint cartilage?: an in vivo study in sheep stifle joints. Medicine

2015;94:e414.

[40]

Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and

angiogenesis in vitro. Tissue eng 2005;11:768

77.

[41]

Virolainen P, Heikkila J, Yli-Urpo A, Vuorio E, Aro HT. Histomorphometric and molecular

biologic comparison of bioactive glass granules and autogenous bone grafts in

augmentation of bone defect healing. J Biomed Mater Res 1997;35:9

17.

[42]

Heikkila JT, Kukkonen J, Aho AJ, Moisander S, Kyyronen T, Mattila K. Bioactive glass

granules: a suitable bone substitute material in the operative treatment of depressed

lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study. J Mater

Sci Mater Med 2011;22:1073

80.

[43]

Pernaa K, Koski I, Mattila K, Gullichsen E, Heikkila J, Aho A, et al. Bioactive glass S53P4 and

autograft bone in treatment of depressed tibial plateau fractures - a prospective

randomized 11-year follow-up. J Long Term Eff Med Implants 2011;21:139

48.

[44]

Watson JT. The use of an injectable bone graft substitute in tibial metaphyseal fractures.

Orthopedics 2004;27:s103

7.

[45]

Yu B, Han K, Ma H, Zhang C, Su J, Zhao J, et al. Treatment of tibial plateau fractures with

high strength injectable calcium sulphate. Int Orthop 2009;33:1127

33.

C. Kammerlander et al. / Injury, Int. J. Care Injured 47S2 (2016) S36

S43

S42